November 2020

Introduction to R

Instructor: Avi Bar Massada

Course objectives

1. To learn the fundamentals of R syntax
2. To understand the concept and practices of data preprocessing
3. To learn how to conduct common and advanced statistical methods
4. To learn to generate both basic and high-level graphics suitable for scientific publications

Ideally, after completing the course students should feel comfortable enough in their skills to begin utilizing R as their main statistical package. To successfully implement the knowledge gained during the course, students should begin using R in their own projects as soon as possible, or else it is likely that they will forget the basic syntax of R, which is the key hurdle towards effectively incorporating R in one’s own research.

Background requirements

Students should have taken an advanced-level statistical course (graduate level). The course assumes knowledge and understanding of basic statistical tests, linear models, and multivariate analyses.

Student evaluation

Weekly assignments (100%).

Course structure

The course will be divided into units, roughly representing the standard way of utilizing R in research. Within each unit, the class will feature a formal presentation followed by hands-on practice by the students. While most practices will be based on data provided by the instructor, it is possible to practice using data related to one’s own research, after the original tasks are completed.
Program

Unit 1: Intro and syntax

What is R? GUI types (Rgui, RStudio), ways of getting help, working with packages
R syntax
Object types (vectors, matrices, arrays, data frames, model objects, lists)
Working with scripts
Writing functions
A general framework for using R during research

Unit 2: Data management and preprocessing

Importing/exporting data (from/to text files, excel files)
Data processing (clearing, subsetting, slicing, reshaping, conversions, shuffling)
Generating new data using different statistical distributions

Unit 3: Descriptive statistics and basic plotting

Summary statistics
Basic plotting (using R-base)

Unit 4: Statistical inference

Common statistical tests (anova, Z, t, χ^2, nonparametric tests)
Linear models (simple and multivariate)
Generalized linear models (logistic regression)
Mixed models (linear and generalized)

Unit 5: Multivariate analyses

Distance matrices
Ordinations (PCA, NMDS, CCA)
Significance tests for multivariate data (Mantel, ANOSIM, ADONIS, PERMANOVA)
Plotting multivariate data

Unit 6: Advanced plotting

Complex plots using R-base; 3D plotting, Using ggplot2 (optional, TBD)